Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Macdonald expansions of $q$-chromatic symmetric functions and the Stanley-Stembridge Conjecture (2504.06936v1)

Published 9 Apr 2025 in math.CO and math.RT

Abstract: The Stanley-Stembridge conjecture asserts that the chromatic symmetric function of a $(3+1)$-free graph is $e$-positive. Recently, Hikita proved this conjecture by giving an explicit $e$-expansion of the Shareshian-Wachs $q$-chromatic refinement for unit interval graphs. Using the $\mathbb{A}_{q,t}$ algebra, we give an expansion of these $q$-chromatic symmetric functions into Macdonald polynomials. Upon setting $t=1$, we obtain another proof of the Stanley-Stembridge conjecture and rederive Hikita's formula. Upon setting $t=0$, we obtain an expansion into Hall-Littlewood symmetric functions.

Summary

We haven't generated a summary for this paper yet.