Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
146 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Lightweight Multi-Module Fusion Approach for Korean Character Recognition (2504.05770v1)

Published 8 Apr 2025 in cs.CV and cs.AI

Abstract: Optical Character Recognition (OCR) is essential in applications such as document processing, license plate recognition, and intelligent surveillance. However, existing OCR models often underperform in real-world scenarios due to irregular text layouts, poor image quality, character variability, and high computational costs. This paper introduces SDA-Net (Stroke-Sensitive Attention and Dynamic Context Encoding Network), a lightweight and efficient architecture designed for robust single-character recognition. SDA-Net incorporates: (1) a Dual Attention Mechanism to enhance stroke-level and spatial feature extraction; (2) a Dynamic Context Encoding module that adaptively refines semantic information using a learnable gating mechanism; (3) a U-Net-inspired Feature Fusion Strategy for combining low-level and high-level features; and (4) a highly optimized lightweight backbone that reduces memory and computational demands. Experimental results show that SDA-Net achieves state-of-the-art accuracy on challenging OCR benchmarks, with significantly faster inference, making it well-suited for deployment in real-time and edge-based OCR systems.

Summary

We haven't generated a summary for this paper yet.