Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 33 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 483 tok/s Pro
Kimi K2 242 tok/s Pro
2000 character limit reached

Point-based Instance Completion with Scene Constraints (2504.05698v1)

Published 8 Apr 2025 in cs.CV

Abstract: Recent point-based object completion methods have demonstrated the ability to accurately recover the missing geometry of partially observed objects. However, these approaches are not well-suited for completing objects within a scene, as they do not consider known scene constraints (e.g., other observed surfaces) in their completions and further expect the partial input to be in a canonical coordinate system, which does not hold for objects within scenes. While instance scene completion methods have been proposed for completing objects within a scene, they lag behind point-based object completion methods in terms of object completion quality and still do not consider known scene constraints during completion. To overcome these limitations, we propose a point cloud-based instance completion model that can robustly complete objects at arbitrary scales and pose in the scene. To enable reasoning at the scene level, we introduce a sparse set of scene constraints represented as point clouds and integrate them into our completion model via a cross-attention mechanism. To evaluate the instance scene completion task on indoor scenes, we further build a new dataset called ScanWCF, which contains labeled partial scans as well as aligned ground truth scene completions that are watertight and collision-free. Through several experiments, we demonstrate that our method achieves improved fidelity to partial scans, higher completion quality, and greater plausibility over existing state-of-the-art methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube