Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Saliency-driven Dynamic Token Pruning for Large Language Models (2504.04514v2)

Published 6 Apr 2025 in cs.CL and cs.AI

Abstract: Despite the recent success of LLMs, LLMs are particularly challenging in long-sequence inference scenarios due to the quadratic computational complexity of the attention mechanism. Inspired by the interpretability theory of feature attribution in neural network models, we observe that not all tokens have the same contribution. Based on this observation, we propose a novel token pruning framework, namely Saliency-driven Dynamic Token Pruning (SDTP), to gradually and dynamically prune redundant tokens based on the input context. Specifically, a lightweight saliency-driven prediction module is designed to estimate the importance score of each token with its hidden state, which is added to different layers of the LLM to hierarchically prune redundant tokens. Furthermore, a ranking-based optimization strategy is proposed to minimize the ranking divergence of the saliency score and the predicted importance score. Extensive experiments have shown that our framework is generalizable to various models and datasets. By hierarchically pruning 65\% of the input tokens, our method greatly reduces 33\% $\sim$ 47\% FLOPs and achieves speedup up to 1.75$\times$ during inference, while maintaining comparable performance. We further demonstrate that SDTP can be combined with KV cache compression method for further compression.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube