Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Driving-RAG: Driving Scenarios Embedding, Search, and RAG Applications (2504.04419v1)

Published 6 Apr 2025 in cs.RO and cs.AI

Abstract: Driving scenario data play an increasingly vital role in the development of intelligent vehicles and autonomous driving. Accurate and efficient scenario data search is critical for both online vehicle decision-making and planning, and offline scenario generation and simulations, as it allows for leveraging the scenario experiences to improve the overall performance. Especially with the application of LLMs and Retrieval-Augmented-Generation (RAG) systems in autonomous driving, urgent requirements are put forward. In this paper, we introduce the Driving-RAG framework to address the challenges of efficient scenario data embedding, search, and applications for RAG systems. Our embedding model aligns fundamental scenario information and scenario distance metrics in the vector space. The typical scenario sampling method combined with hierarchical navigable small world can perform efficient scenario vector search to achieve high efficiency without sacrificing accuracy. In addition, the reorganization mechanism by graph knowledge enhances the relevance to the prompt scenarios and augment LLM generation. We demonstrate the effectiveness of the proposed framework on typical trajectory planning task for complex interactive scenarios such as ramps and intersections, showcasing its advantages for RAG applications.

Summary

We haven't generated a summary for this paper yet.