Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Neural Parametric Mixtures for Path Guiding (2504.04315v1)

Published 6 Apr 2025 in cs.GR

Abstract: Previous path guiding techniques typically rely on spatial subdivision structures to approximate directional target distributions, which may cause failure to capture spatio-directional correlations and introduce parallax issue. In this paper, we present Neural Parametric Mixtures (NPM), a neural formulation to encode target distributions for path guiding algorithms. We propose to use a continuous and compact neural implicit representation for encoding parametric models while decoding them via lightweight neural networks. We then derive a gradient-based optimization strategy to directly train the parameters of NPM with noisy Monte Carlo radiance estimates. Our approach efficiently models the target distribution (incident radiance or the product integrand) for path guiding, and outperforms previous guiding methods by capturing the spatio-directional correlations more accurately. Moreover, our approach is more training efficient and is practical for parallelization on modern GPUs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.