Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Explicit Syllogistic Legal Reasoning Framework for Large Language Models (2504.04042v2)

Published 5 Apr 2025 in cs.CL

Abstract: Syllogistic reasoning is crucial for sound legal decision-making, allowing legal professionals to draw logical conclusions by applying general principles to specific case facts. While LLMs can answer legal questions, they often struggle with explicit syllogistic reasoning. Their outputs tend to be implicit, unstructured, and consequently, less explainable and trustworthy. To overcome these limitations, we introduce SyLeR, a novel framework designed to enable LLMs to perform explicit syllogistic legal reasoning. SyLeR employs a tree-structured hierarchical retrieval mechanism to synthesize relevant legal statutes and precedents, thereby constructing comprehensive major premises. This is followed by a two-stage fine-tuning process: an initial supervised fine-tuning warm-up establishes a foundational understanding of syllogistic reasoning, while reinforcement learning, guided by a structure-aware reward mechanism, refines the model's capacity to generate diverse, logically sound, and well-structured reasoning paths. We conducted extensive experiments to evaluate SyLeR's performance. Our evaluations spanned diverse dimensions, including both in-domain and cross-domain user groups (legal laypersons and practitioners), multiple languages (Chinese and French), and various LLM backbones (legal-specific and open-domain LLMs). The results consistently demonstrate that SyLeR significantly enhances response accuracy and reliably produces explicit, explainable, and trustworthy legal reasoning.

Summary

We haven't generated a summary for this paper yet.