Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
106 tokens/sec
Gemini 2.5 Pro Premium
53 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
109 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Learning Lie Group Generators from Trajectories (2504.03220v1)

Published 4 Apr 2025 in cs.LG

Abstract: This work investigates the inverse problem of generator recovery in matrix Lie groups from discretized trajectories. Let $G$ be a real matrix Lie group and $\mathfrak{g} = \text{Lie}(G)$ its corresponding Lie algebra. A smooth trajectory $\gamma($t$)$ generated by a fixed Lie algebra element $\xi \in \mathfrak{g}$ follows the exponential flow $\gamma($t$) = g_0 \cdot \exp(t \xi)$. The central task addressed in this work is the reconstruction of such a latent generator $\xi$ from a discretized sequence of poses $ {g_0, g_1, \dots, g_T} \subset G$, sampled at uniform time intervals. This problem is formulated as a data-driven regression from normalized sequences of discrete Lie algebra increments $\log\left(g_{t}{-1} g_{t+1}\right)$ to the constant generator $\xi \in \mathfrak{g}$. A feedforward neural network is trained to learn this mapping across several groups, including $\text{SE(2)}, \text{SE(3)}, \text{SO(3)}, and \text{SL(2,$\mathbb{R})$}$. It demonstrates strong empirical accuracy under both clean and noisy conditions, which validates the viability of data-driven recovery of Lie group generators using shallow neural architectures. This is Lie-RL GitHub Repo https://github.com/Anormalm/LieRL-on-Trajectories. Feel free to make suggestions and collaborations!

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube