Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Investment Strategies Through Market Classification and Volatility: A Machine Learning Approach (2504.02841v1)

Published 19 Mar 2025 in q-fin.PM, math.ST, and stat.TH

Abstract: This study introduces a dynamic investment framework to enhance portfolio management in volatile markets, offering clear advantages over traditional static strategies. Evaluates four conventional approaches : equal weighted, minimum variance, maximum diversification, and equal risk contribution under dynamic conditions. Using K means clustering, the market is segmented into ten volatility-based states, with transitions forecasted by a Bayesian Markov switching model employing Dirichlet priors and Gibbs sampling. This enables real-time asset allocation adjustments. Tested across two asset sets, the dynamic portfolio consistently achieves significantly higher risk-adjusted returns and substantially higher total returns, outperforming most static methods. By integrating classical optimization with machine learning and Bayesian techniques, this research provides a robust strategy for optimizing investment outcomes in unpredictable market environments.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com