Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CrystalFormer-RL: Reinforcement Fine-Tuning for Materials Design (2504.02367v1)

Published 3 Apr 2025 in cond-mat.mtrl-sci, cs.LG, and physics.comp-ph

Abstract: Reinforcement fine-tuning has instrumental enhanced the instruction-following and reasoning abilities of LLMs. In this work, we explore the applications of reinforcement fine-tuning to the autoregressive transformer-based materials generative model CrystalFormer (arXiv:2403.15734) using discriminative machine learning models such as interatomic potentials and property prediction models. By optimizing reward signals-such as energy above the convex hull and material property figures of merit-reinforcement fine-tuning infuses knowledge from discriminative models into generative models. The resulting model, CrystalFormer-RL, shows enhanced stability in generated crystals and successfully discovers crystals with desirable yet conflicting material properties, such as substantial dielectric constant and band gap simultaneously. Notably, we observe that reinforcement fine-tuning enables not only the property-guided novel material design ability of generative pre-trained model but also unlocks property-driven material retrieval from the unsupervised pre-training dataset. Leveraging rewards from discriminative models to fine-tune materials generative models opens an exciting gateway to the synergies of the machine learning ecosystem for materials.

Summary

We haven't generated a summary for this paper yet.