Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Plot Thickens: Quantitative Part-by-Part Exploration of MLLM Visualization Literacy (2504.02217v1)

Published 3 Apr 2025 in cs.HC

Abstract: Multimodal LLMs (MLLMs) can interpret data visualizations, but what makes a visualization understandable to these models? Do factors like color, shape, and text influence legibility, and how does this compare to human perception? In this paper, we build on prior work to systematically assess which visualization characteristics impact MLLM interpretability. We expanded the Visualization Literacy Assessment Test (VLAT) test set from 12 to 380 visualizations by varying plot types, colors, and titles. This allowed us to statistically analyze how these features affect model performance. Our findings suggest that while color palettes have no significant impact on accuracy, plot types and the type of title significantly affect MLLM performance. We observe similar trends for model omissions. Based on these insights, we look into which plot types are beneficial for MLLMs in different tasks and propose visualization design principles that enhance MLLM readability. Additionally, we make the extended VLAT test set, VLAT ex, publicly available on https://osf.io/ermwx/ together with our supplemental material for future model testing and evaluation.

Summary

We haven't generated a summary for this paper yet.