Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 31 TPS
GPT-5 High 29 TPS Pro
GPT-4o 96 TPS
GPT OSS 120B 475 TPS Pro
Kimi K2 194 TPS Pro
2000 character limit reached

Recovery Reductions in the Random Noise Model via Group Theory: Insights into NP-Complete and Fine-Grained Problems (2504.01899v1)

Published 2 Apr 2025 in cs.CC

Abstract: We introduce and initiate the study of a new model of reductions called the random noise model. In this model, the truth table $T_f$ of the function $f$ is corrupted on a randomly chosen $\delta$-fraction of instances. A randomized algorithm $A$ is a $\left(t, \delta, 1-\varepsilon\right)$-recovery reduction for $f$ if: 1. With probability $1-\varepsilon$ over the choice of $\delta$-fraction corruptions, given access to the corrupted truth table, the algorithm $A$ computes $f(\phi)$ correctly with probability at least $2/3$ on every input $\phi$. 2. The algorithm $A$ runs in time $O(t)$. We believe this model, which is a natural relaxation of average-case complexity, both has practical motivations and is mathematically interesting. Pointing towards this, we show the existence of robust deterministic polynomial-time recovery reductions with the highest tolerable noise level for many of the canonical NP-complete problems - SAT, kSAT, kCSP, CLIQUE and more. Our recovery reductions are optimal for non-adaptive algorithms under complexity-theoretic assumptions. Notably, all our recovery reductions follow as corollaries of one black box algorithm based on group theory and permutation group algorithms. This suggests that recovery reductions in the random noise model are important to the study of the structure of NP-completeness. Furthermore, we establish recovery reductions with optimal parameters for Orthogonal Vectors and Parity $k$-Clique problems. These problems exhibit structural similarities to NP-complete problems, with Orthogonal Vectors admitting a $2{0.5n}$-time reduction from kSAT on $n$ variables and Parity $k$-Clique, a subexponential-time reduction from 3SAT. This further highlights the relevance of our model to the study of NP-completeness.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com