Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AI-Newton: A Concept-Driven Physical Law Discovery System without Prior Physical Knowledge (2504.01538v1)

Published 2 Apr 2025 in cs.AI, cs.LG, cs.SC, hep-ph, and physics.class-ph

Abstract: Current limitations in human scientific discovery necessitate a new research paradigm. While advances in AI offer a highly promising solution, enabling AI to emulate human-like scientific discovery remains an open challenge. To address this, we propose AI-Newton, a concept-driven discovery system capable of autonomously deriving physical laws from raw data -- without supervision or prior physical knowledge. The system integrates a knowledge base and knowledge representation centered on physical concepts, along with an autonomous discovery workflow. As a proof of concept, we apply AI-Newton to a large set of Newtonian mechanics problems. Given experimental data with noise, the system successfully rediscovers fundamental laws, including Newton's second law, energy conservation and law of gravitation, using autonomously defined concepts. This achievement marks a significant step toward AI-driven autonomous scientific discovery.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com