Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Mixture-of-Experts for Distributed Edge Computing with Channel-Aware Gating Function (2504.00819v1)

Published 1 Apr 2025 in cs.LG

Abstract: In a distributed mixture-of-experts (MoE) system, a server collaborates with multiple specialized expert clients to perform inference. The server extracts features from input data and dynamically selects experts based on their areas of specialization to produce the final output. Although MoE models are widely valued for their flexibility and performance benefits, adapting distributed MoEs to operate effectively in wireless networks has remained unexplored. In this work, we introduce a novel channel-aware gating function for wireless distributed MoE, which incorporates channel conditions into the MoE gating mechanism. To train the channel-aware gating, we simulate various signal-to-noise ratios (SNRs) for each expert's communication channel and add noise to the features distributed to the experts based on these SNRs. The gating function then utilizes both features and SNRs to optimize expert selection. Unlike conventional MoE models which solely consider the alignment of features with the specializations of experts, our approach additionally considers the impact of channel conditions on expert performance. Experimental results demonstrate that the proposed channel-aware gating scheme outperforms traditional MoE models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.