Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ParallelFlow: Parallelizing Linear Transformers via Flow Discretization (2504.00492v1)

Published 1 Apr 2025 in cs.LG and math.DS

Abstract: We present a theoretical framework for analyzing linear attention models through matrix-valued state space models (SSMs). Our approach, Parallel Flows, provides a perspective that systematically decouples temporal dynamics from implementation constraints, enabling independent analysis of critical algorithmic components: chunking, parallelization, and information aggregation. Central to this framework is the reinterpretation of chunking procedures as computations of the flows governing system dynamics. This connection establishes a bridge to mathematical tools from rough path theory, opening the door to new insights into sequence modeling architectures. As a concrete application, we analyze DeltaNet in a generalized low-rank setting motivated by recent theoretical advances. Our methods allow us to design simple, streamlined generalizations of hardware-efficient algorithms present in the literature, and to provide completely different ones, inspired by rough paths techniques, with provably lower complexity. This dual contribution demonstrates how principled theoretical analysis can both explain existing practical methods and inspire fundamentally new computational approaches.

Summary

We haven't generated a summary for this paper yet.