Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion (2503.24354v2)

Published 31 Mar 2025 in cs.LG, cs.AI, cs.CL, and cs.CV

Abstract: Parameter generation has emerged as a novel paradigm for neural network development, offering an alternative to traditional neural network training by synthesizing high-quality model weights directly. In the context of Low-Rank Adaptation (LoRA) for evolving ($\textit{i.e.}$, constantly updated) LLMs, this approach promises efficient adaptation without costly retraining. However, existing methods face critical limitations in simultaneously achieving scalability and controllability. In this paper, we introduce $\texttt{ORAL}$, a novel $\textbf{conditional recurrent diffusion}$ framework that addresses these challenges. $\texttt{ORAL}$ incorporates a novel conditioning mechanism that integrates model architecture and textual task specifications, enabling the generation of task-specific LoRA parameters that can seamlessly transfer across evolving foundation models. Our approach successfully scales to billions-of-parameter LLMs and maintains controllability. Through extensive experiments across seven language tasks, four vision tasks, and three multimodal tasks using five pre-trained LLMs, we demonstrate that $\texttt{ORAL}$ generates high-quality LoRA parameters that achieve comparable or superior performance to vanilla trained counterparts.

Summary

We haven't generated a summary for this paper yet.