Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems (2503.23641v1)

Published 31 Mar 2025 in math.OC, cs.AI, cs.SY, and eess.SY

Abstract: This work explores generalizations of the Polyak-Lojasiewicz inequality (PLI) and their implications for the convergence behavior of gradient flows in optimization problems. Motivated by the continuous-time linear quadratic regulator (CT-LQR) policy optimization problem -- where only a weaker version of the PLI is characterized in the literature -- this work shows that while weaker conditions are sufficient for global convergence to, and optimality of the set of critical points of the cost function, the "profile" of the gradient flow solution can change significantly depending on which "flavor" of inequality the cost satisfies. After a general theoretical analysis, we focus on fitting the CT-LQR policy optimization problem to the proposed framework, showing that, in fact, it can never satisfy a PLI in its strongest form. We follow up our analysis with a brief discussion on the difference between continuous- and discrete-time LQR policy optimization, and end the paper with some intuition on the extension of this framework to optimization problems with L1 regularization and solved through proximal gradient flows.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com