Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

DGSAM: Domain Generalization via Individual Sharpness-Aware Minimization (2503.23430v2)

Published 30 Mar 2025 in stat.ML, cs.LG, math.OC, and stat.AP

Abstract: Domain generalization (DG) aims to learn models that perform well on unseen target domains by training on multiple source domains. Sharpness-Aware Minimization (SAM), known for finding flat minima that improve generalization, has therefore been widely adopted in DG. However, our analysis reveals that SAM in DG may converge to \textit{fake flat minima}, where the total loss surface appears flat in terms of global sharpness but remains sharp with respect to individual source domains. To understand this phenomenon more precisely, we formalize the average worst-case domain risk as the maximum loss under domain distribution shifts within a bounded divergence, and derive a generalization bound that reveals the limitations of global sharpness-aware minimization. In contrast, we show that individual sharpness provides a valid upper bound on this risk, making it a more suitable proxy for robust domain generalization. Motivated by these insights, we shift the DG paradigm toward minimizing individual sharpness across source domains. We propose \textit{Decreased-overhead Gradual SAM (DGSAM)}, which applies gradual domain-wise perturbations in a computationally efficient manner to consistently reduce individual sharpness. Extensive experiments demonstrate that DGSAM not only improves average accuracy but also reduces performance variance across domains, while incurring less computational overhead than SAM.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.