Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A QUBO Framework for Team Formation (2503.23209v1)

Published 29 Mar 2025 in cs.LG, cs.DM, and cs.SI

Abstract: The team formation problem assumes a set of experts and a task, where each expert has a set of skills and the task requires some skills. The objective is to find a set of experts that maximizes coverage of the required skills while simultaneously minimizing the costs associated with the experts. Different definitions of cost have traditionally led to distinct problem formulations and algorithmic solutions. We introduce the unified TeamFormation formulation that captures all cost definitions for team formation problems that balance task coverage and expert cost. Specifically, we formulate three TeamFormation variants with different cost functions using quadratic unconstrained binary optimization (QUBO), and we evaluate two distinct general-purpose solution methods. We show that solutions based on the QUBO formulations of TeamFormation problems are at least as good as those produced by established baselines. Furthermore, we show that QUBO-based solutions leveraging graph neural networks can effectively learn representations of experts and skills to enable transfer learning, allowing node embeddings from one problem instance to be efficiently applied to another.

Summary

We haven't generated a summary for this paper yet.