Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Quantum Approximate Multi-Objective Optimization (2503.22797v1)

Published 28 Mar 2025 in quant-ph

Abstract: The goal of multi-objective optimization is to understand optimal trade-offs between competing objective functions by finding the Pareto front, i.e., the set of all Pareto optimal solutions, where no objective can be improved without degrading another one. Multi-objective optimization can be challenging classically, even if the corresponding single-objective optimization problems are efficiently solvable. Thus, multi-objective optimization represents a compelling problem class to analyze with quantum computers. In this work, we use low-depth Quantum Approximate Optimization Algorithm to approximate the optimal Pareto front of certain multi-objective weighted maximum cut problems. We demonstrate its performance on an IBM Quantum computer, as well as with Matrix Product State numerical simulation, and show its potential to outperform classical approaches.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com