Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards explainable data-driven predictive control with regularizations (2503.21952v1)

Published 27 Mar 2025 in eess.SY, cs.SY, and math.OC

Abstract: Data-driven predictive control (DPC), using linear combinations of recorded trajectory data, has recently emerged as a popular alternative to traditional model predictive control (MPC). Without an explicitly enforced prediction model, the effects of commonly used regularization terms (and the resulting predictions) can be opaque. This opacity may lead to practical challenges, such as reliance on empirical tuning of regularization parameters based on closed-loop performance, and potentially misleading heuristic interpretations of norm-based regularizations. However, by examining the structure of the underlying optimal control problem (OCP), more precise and insightful interpretations of regularization effects can be derived. In this paper, we demonstrate how to analyze the predictive behavior of DPC through implicit predictors and the trajectory-specific effects of quadratic regularization. We further extend these results to cover typical DPC modifications, including DPC for affine systems, offset regularizations, slack variables, and terminal constraints. Additionally, we provide a simple but general result on (recursive) feasibility in DPC. This work aims to enhance the explainability and reliability of DPC by providing a deeper understanding of these regularization mechanisms.

Summary

We haven't generated a summary for this paper yet.