Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

Output-sensitive approximate counting via a measure-bounded hyperedge oracle, or: How asymmetry helps estimate $k$-clique counts faster (2503.21655v1)

Published 27 Mar 2025 in cs.DS

Abstract: Dell, Lapinskas and Meeks [DLM SICOMP 2022] presented a general reduction from approximate counting to decision for a class of fine-grained problems that can be viewed as hyperedge counting or detection problems in an implicit hypergraph, thus obtaining tight equivalences between approximate counting and decision for many key problems such as $k$-clique, $k$-sum and more. Their result is a reduction from approximately counting the number of hyperedges in an implicit $k$-partite hypergraph to a polylogarithmic number of calls to a hyperedge oracle that returns whether a given subhypergraph contains an edge. The main result of this paper is a generalization of the DLM result for {\em output-sensitive} approximate counting, where the running time of the desired counting algorithm is inversely proportional to the number of witnesses. Our theorem is a reduction from approximately counting the (unknown) number of hyperedges in an implicit $k$-partite hypergraph to a polylogarithmic number of calls to a hyperedge oracle called only on subhypergraphs with a small ``measure''. If a subhypergraph has $u_i$ nodes in the $i$th node partition of the $k$-partite hypergraph, then its measure is $\prod_i u_i$. Using the new general reduction and by efficiently implementing measure-bounded colorful independence oracles, we obtain new improved output-sensitive approximate counting algorithms for $k$-clique, $k$-dominating set and $k$-sum. In graphs with $nt$ $k$-cliques, for instance, our algorithm $(1\pm \epsilon)$-approximates the $k$-clique count in time $$\tilde{O}_\epsilon(n{\omega(\frac{k-t-1}{3},\frac{k-t}{3},\frac{k-t+2}{3}) }+n2),$$ where $\omega(a,b,c)$ is the exponent of $na\times nb$ by $nb\times nc$ matrix multiplication. For large $k$ and $t>2$, this is a substantial improvement over prior work, even if $\omega=2$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.