Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operators on injective tensor products of separable Banach spaces and spaces with few operators (2503.21379v1)

Published 27 Mar 2025 in math.FA

Abstract: We give a characterization of the operators on the injective tensor product $E \hat{\otimes}\varepsilon X$ for $E$ a separable Banach space and $X$ a (non-separable) Banach space with few operators, in the sense that any operator $T: X \to X$ takes the form $T = \lambda I + S$ for a scalar $\lambda \in \mathbb{K}$ and an operator $S$ with separable range. This is used to give a classification of the complemented subspaces and closed operator ideals of spaces of the form $C_0(\omega \times K\mathcal{A})$, where $K_\mathcal{A}$ is a locally compact Hausdorff space induced by an almost disjoint family $\mathcal{A}$ such that $C_0(K_\mathcal{A})$ has few operators.

Summary

We haven't generated a summary for this paper yet.