Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PilotANN: Memory-Bounded GPU Acceleration for Vector Search (2503.21206v1)

Published 27 Mar 2025 in cs.DC

Abstract: Approximate Nearest Neighbor Search (ANNS) has become fundamental to modern deep learning applications, having gained particular prominence through its integration into recent generative models that work with increasingly complex datasets and higher vector dimensions. Existing CPU-only solutions, even the most efficient graph-based ones, struggle to meet these growing computational demands, while GPU-only solutions face memory constraints. As a solution, we propose PilotANN, a hybrid CPU-GPU system for graph-based ANNS that utilizes both CPU's abundant RAM and GPU's parallel processing capabilities. Our approach decomposes the graph traversal process of top-$k$ search into three stages: GPU-accelerated subgraph traversal using SVD-reduced vectors, CPU refinement and precise search using complete vectors. Furthermore, we introduce fast entry selection to improve search starting points while maximizing GPU utilization. Experimental results demonstrate that PilotANN achieves $3.9 - 5.4 \times$ speedup in throughput on 100-million scale datasets, and is able to handle datasets up to $12 \times$ larger than the GPU memory. We offer a complete open-source implementation at https://github.com/ytgui/PilotANN.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com