Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Critical branching processes with immigration: scaling limits of local extinction sets (2503.20923v1)

Published 26 Mar 2025 in math.PR

Abstract: We establish the joint scaling limit of a critical Bienaym\'e-Galton-Watson process with immigration (BGWI) and its (counting) local time at zero to the corresponding self-similar continuous-state branching process with immigration (CBI) and its (Markovian) local time at zero for balanced offspring and immigration laws in stable domains of attraction. Using a general framework for invariance principles of local times~\cite{MR4463082}, the problem reduces to the analysis of the structure of excursions from zero and positive levels, together with the weak convergence of the hitting times of points of the BGWI to those of the CBI. A key step in the proof of our main limit theorem is a novel Yaglom limit for the law at time $t$ of an excursion with lifetime exceeding $t$ of a scaled infinite-variance critical BGWI. Our main result implies a joint septuple scaling limit of BGWI $Z_1$, its local time at $0$, the random walks $X_1$ and $Y_1$ associated to the reproduction and immigration mechanisms, respectively, the counting local time at $0$ of $X_1$, an additive functional of $Z_1$ and $X_1$ evaluated at this functional. In the septuple limit, four different scaling sequences are identified and given explicitly in terms of the offspring generating function (modulo asymptotic inversion), the local extinction probabilities of the BGWI and the tails of return times to zero of $X_1$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com