Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advancements in Natural Language Processing: Exploring Transformer-Based Architectures for Text Understanding (2503.20227v1)

Published 26 Mar 2025 in cs.CL and cs.AI

Abstract: NLP has witnessed a transformative leap with the advent of transformer-based architectures, which have significantly enhanced the ability of machines to understand and generate human-like text. This paper explores the advancements in transformer models, such as BERT and GPT, focusing on their superior performance in text understanding tasks compared to traditional methods like recurrent neural networks (RNNs). By analyzing statistical properties through visual representations-including probability density functions of text length distributions and feature space classifications-the study highlights the models' proficiency in handling long-range dependencies, adapting to conditional shifts, and extracting features for classification, even with overlapping classes. Drawing on recent 2024 research, including enhancements in multi-hop knowledge graph reasoning and context-aware chat interactions, the paper outlines a methodology involving data preparation, model selection, pretraining, fine-tuning, and evaluation. The results demonstrate state-of-the-art performance on benchmarks like GLUE and SQuAD, with F1 scores exceeding 90%, though challenges such as high computational costs persist. This work underscores the pivotal role of transformers in modern NLP and suggests future directions, including efficiency optimization and multimodal integration, to further advance language-based AI systems.

Summary

We haven't generated a summary for this paper yet.