Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Boosting the Transferability of Audio Adversarial Examples with Acoustic Representation Optimization (2503.19591v1)

Published 25 Mar 2025 in cs.SD, cs.CR, cs.LG, and eess.AS

Abstract: With the widespread application of automatic speech recognition (ASR) systems, their vulnerability to adversarial attacks has been extensively studied. However, most existing adversarial examples are generated on specific individual models, resulting in a lack of transferability. In real-world scenarios, attackers often cannot access detailed information about the target model, making query-based attacks unfeasible. To address this challenge, we propose a technique called Acoustic Representation Optimization that aligns adversarial perturbations with low-level acoustic characteristics derived from speech representation models. Rather than relying on model-specific, higher-layer abstractions, our approach leverages fundamental acoustic representations that remain consistent across diverse ASR architectures. By enforcing an acoustic representation loss to guide perturbations toward these robust, lower-level representations, we enhance the cross-model transferability of adversarial examples without degrading audio quality. Our method is plug-and-play and can be integrated with any existing attack methods. We evaluate our approach on three modern ASR models, and the experimental results demonstrate that our method significantly improves the transferability of adversarial examples generated by previous methods while preserving the audio quality.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube