Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
462 tokens/sec
Kimi K2 via Groq Premium
254 tokens/sec
2000 character limit reached

Quantifying the Ease of Reproducing Training Data in Unconditional Diffusion Models (2503.19429v1)

Published 25 Mar 2025 in cs.LG and cs.CV

Abstract: Diffusion models, which have been advancing rapidly in recent years, may generate samples that closely resemble the training data. This phenomenon, known as memorization, may lead to copyright issues. In this study, we propose a method to quantify the ease of reproducing training data in unconditional diffusion models. The average of a sample population following the Langevin equation in the reverse diffusion process moves according to a first-order ordinary differential equation (ODE). This ODE establishes a 1-to-1 correspondence between images and their noisy counterparts in the latent space. Since the ODE is reversible and the initial noisy images are sampled randomly, the volume of an image's projected area represents the probability of generating those images. We examined the ODE, which projects images to latent space, and succeeded in quantifying the ease of reproducing training data by measuring the volume growth rate in this process. Given the relatively low computational complexity of this method, it allows us to enhance the quality of training data by detecting and modifying the easily memorized training samples.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.