Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized strong rank-revealing QR for column subset selection and low-rank matrix approximation (2503.18496v1)

Published 24 Mar 2025 in math.NA and cs.NA

Abstract: We discuss a randomized strong rank-revealing QR factorization that effectively reveals the spectrum of a matrix $\textbf{M}$. This factorization can be used to address problems such as selecting a subset of the columns of $\textbf{M}$, computing its low-rank approximation, estimating its rank, or approximating its null space. Given a random sketching matrix $\pmb{\Omega}$ that satisfies the $\epsilon$-embedding property for a subspace within the range of $\textbf{M}$, the factorization relies on selecting columns that allow to reveal the spectrum via a deterministic strong rank-revealing QR factorization of $\textbf{M}{sk} = \pmb{\Omega}\textbf{M}$, the sketch of $\textbf{M}$. We show that this selection leads to a factorization with strong rank-revealing properties, making it suitable for approximating the singular values of $\textbf{M}$.

Summary

We haven't generated a summary for this paper yet.