Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Supervised Manifold Learning for Functional Data (2503.17943v1)

Published 23 Mar 2025 in stat.ME and stat.ML

Abstract: Classification is a core topic in functional data analysis. A large number of functional classifiers have been proposed in the literature, most of which are based on functional principal component analysis or functional regression. In contrast, we investigate this topic from the perspective of manifold learning. It is assumed that functional data lie on an unknown low-dimensional manifold, and we expect that better classifiers can be built upon the manifold structure. To this end, we propose a novel proximity measure that takes the label information into account to learn the low-dimensional representations, also known as the supervised manifold learning outcomes. When the outcomes are coupled with multivariate classifiers, the procedure induces a family of new functional classifiers. In theory, we show that our functional classifier induced by the $k$-NN classifier is asymptotically optimal. In practice, we show that our method, coupled with several classical multivariate classifiers, achieves outstanding classification performance compared to existing functional classifiers in both synthetic and real data examples.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube