Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Enhancing Fourier Neural Operators with Local Spatial Features (2503.17797v2)

Published 22 Mar 2025 in cs.LG and eess.IV

Abstract: Partial Differential Equation (PDE) problems often exhibit strong local spatial structures, and effectively capturing these structures is critical for approximating their solutions. Recently, the Fourier Neural Operator (FNO) has emerged as an efficient approach for solving these PDE problems. By using parametrization in the frequency domain, FNOs can efficiently capture global patterns. However, this approach inherently overlooks the critical role of local spatial features, as frequency-domain parameterized convolutions primarily emphasize global interactions without encoding comprehensive localized spatial dependencies. Although several studies have attempted to address this limitation, their extracted Local Spatial Features (LSFs) remain insufficient, and computational efficiency is often compromised. To address this limitation, we introduce a convolutional neural network (CNN)-based feature pre-extractor to capture LSFs directly from input data, resulting in a hybrid architecture termed \textit{Conv-FNO}. Furthermore, we introduce two novel resizing schemes to make our Conv-FNO resolution invariant. In this work, we focus on demonstrating the effectiveness of incorporating LSFs into FNOs by conducting both a theoretical analysis and extensive numerical experiments. Our findings show that this simple yet impactful modification enhances the representational capacity of FNOs and significantly improves performance on challenging PDE benchmarks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.