Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Persona Consistency for LLMs' Role-Playing using Persona-Aware Contrastive Learning (2503.17662v2)

Published 22 Mar 2025 in cs.CL

Abstract: In recent years, LLMs have achieved breakthrough progress in many dialogue generation tasks. However, their lack of emotion and fine-grained role awareness limits the model's ability to provide personalized and diverse interactions further. Current methods face high costs in collecting high-quality annotated data for scenarios such as role-playing, and traditional human alignment methods are difficult to deploy due to the inherent diversity of model behavior in role-playing scenarios. Inspired by the alignment of models for safety behaviors through RLHF (Reinforcement Learning from Human Feedback), in this paper, we revisit model role-playing behavior from the perspective of persona alignment and propose a novel annotation-free framework named \textbf{\underline{P}}ersona-Aware \textbf{\underline{C}}ontrastive \textbf{\underline{L}}earning (PCL) to align LLMs' behavior during role-playing, enhancing the model's role consistency. Specifically, we first design a role chain method to encourage the model to self-question based on the role characteristics and dialogue context to adjust personality consistency. Then, we further enhance the model's role-playing strategy through iterative contrastive learning between the use of role characteristics and not. Experiments on both black-box and white-box LLMs show that LLMs equipped with PCL significantly outperform vanilla LLMs under automatic evaluation methods (CharEval & GPT-4) and human expert evaluation.

Summary

We haven't generated a summary for this paper yet.