Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Variational Autoencoder Prompt Tuning (2503.17650v1)

Published 22 Mar 2025 in cs.CV

Abstract: Parameter-efficient fine-tuning (PEFT) has emerged as a crucial approach for adapting large vision transformers to downstream tasks without the prohibitive computational costs of full fine-tuning. While existing visual prompt tuning (VPT) methods have made significant strides, they predominantly rely on static, domain-specific prompts that fail to capture the rich visual diversity within individual instances. This paper introduces V$2$APT (Visual Variational Autoencoder Prompt Tuning), a novel framework that generates dynamic, input-dependent prompts using a variational autoencoder architecture. By learning a latent representation of image-specific features and decoding them into customized prompts, V$2$APT adapts to the unique visual characteristics of each input. Extensive experiments on FGVC, HTA, and VTAB-1k benchmarks demonstrate that our approach consistently outperforms state-of-the-art PEFT methods. Notably, V$2$APT achieves +3.2\% improvement over VPT-Deep on HTA, with an average performance gain of +2.0\% across all three datasets.

Summary

We haven't generated a summary for this paper yet.