Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rankformer: A Graph Transformer for Recommendation based on Ranking Objective (2503.16927v1)

Published 21 Mar 2025 in cs.IR

Abstract: Recommender Systems (RS) aim to generate personalized ranked lists for each user and are evaluated using ranking metrics. Although personalized ranking is a fundamental aspect of RS, this critical property is often overlooked in the design of model architectures. To address this issue, we propose Rankformer, a ranking-inspired recommendation model. The architecture of Rankformer is inspired by the gradient of the ranking objective, embodying a unique (graph) transformer architecture -- it leverages global information from all users and items to produce more informative representations and employs specific attention weights to guide the evolution of embeddings towards improved ranking performance. We further develop an acceleration algorithm for Rankformer, reducing its complexity to a linear level with respect to the number of positive instances. Extensive experimental results demonstrate that Rankformer outperforms state-of-the-art methods. The code is available at https://github.com/StupidThree/Rankformer.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com