Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
36 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Agent-S: LLM Agentic workflow to automate Standard Operating Procedures (2503.15520v1)

Published 3 Feb 2025 in cs.HC

Abstract: AI agents using LLMs as foundations have shown promise in solving complex real-world tasks. In this paper, we propose an LLM-based agentic workflow for automating Standard Operating Procedures (SOP). For customer care operations, an SOP defines a logical step-by-step process for human agents to resolve customer issues. We observe that any step in the SOP can be categorized as user interaction or API call, while the logical flow in the SOP defines the navigation. We use LLMs augmented with memory and environments (API tools, user interface, external knowledge source) for SOP automation. Our agentic architecture consists of three task-specific LLMs, a Global Action Repository (GAR), execution memory, and multiple environments. SOP workflow is written as a simple logical block of text. Based on the current execution memory and the SOP, the agent chooses the action to execute; it interacts with an appropriate environment (user/API) to collect observations and feedback, which are, in turn, inputted to memory to decide the next action. The agent is designed to be fault-tolerant, where it dynamically decides to repeat an action or seek input from an external knowledge source. We demonstrate the efficacy of the proposed agent on the three SOPs from the e-commerce seller domain. The experimental results validate the agent's performance under complex real-world scenarios.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)