Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Salient Temporal Encoding for Dynamic Scene Graph Generation (2503.14524v1)

Published 15 Mar 2025 in cs.CV and cs.LG

Abstract: Representing a dynamic scene using a structured spatial-temporal scene graph is a novel and particularly challenging task. To tackle this task, it is crucial to learn the temporal interactions between objects in addition to their spatial relations. Due to the lack of explicitly annotated temporal relations in current benchmark datasets, most of the existing spatial-temporal scene graph generation methods build dense and abstract temporal connections among all objects across frames. However, not all temporal connections are encoding meaningful temporal dynamics. We propose a novel spatial-temporal scene graph generation method that selectively builds temporal connections only between temporal-relevant objects pairs and represents the temporal relations as explicit edges in the scene graph. The resulting sparse and explicit temporal representation allows us to improve upon strong scene graph generation baselines by up to $4.4\%$ in Scene Graph Detection. In addition, we show that our approach can be leveraged to improve downstream vision tasks. Particularly, applying our approach to action recognition, shows 0.6\% gain in mAP in comparison to the state-of-the-art

Summary

We haven't generated a summary for this paper yet.