Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

La Méthode du Gradient Proximé (2503.14479v2)

Published 18 Mar 2025 in math.OC

Abstract: The proximal gradient method is a splitting algorithm for the minimization of the sum of two convex functions, one of which is smooth. It has applications in areas such as mechanics, inverse problems, machine learning, image reconstruction, variational inequalities, statistics, operations research, and optimal transportation. Its formalism encompasses a wide variety of numerical methods in optimization such as gradient descent, projected gradient, iterative thresholding, alternating projections, the constrained Landweber method, as well as various algorithms in statistics and sparse data analysis. This paper aims at providing an account of the main properties of the proximal gradient method and to discuss some of its applications. --- La m\'ethode du gradient proxim\'e est un algorithme d'\'eclatement pour la minimisation de la somme de deux fonctions convexes, dont l'une est lisse. Elle trouve des applications dans des domaines tels que la m\'ecanique, le traitement du signal, les probl`emes inverses, l'apprentissage automatique, la reconstruction d'images, les in\'equations variationnelles, les statistiques, la recherche op\'erationnelle et le transport optimal. Son formalisme englobe une grande vari\'et\'e de m\'ethodes num\'eriques en optimisation, telles que la descente de gradient, le gradient projet\'e, la m\'ethode de seuillage it\'eratif, la m\'ethode des projections altern\'ees, la m\'ethode de Landweber contrainte, ainsi que divers algorithmes en statistique et en analyse parcimonieuse de donn\'ees. Cette synth`ese vise `a donner un aper\c{c}u des principales propri\'et\'es de la m\'ethode du gradient proxim\'e et d'aborder certaines de ses applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube