Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AI-Driven Diabetic Retinopathy Diagnosis Enhancement through Image Processing and Salp Swarm Algorithm-Optimized Ensemble Network (2503.14209v1)

Published 18 Mar 2025 in cs.CV

Abstract: Diabetic retinopathy is a leading cause of blindness in diabetic patients and early detection plays a crucial role in preventing vision loss. Traditional diagnostic methods are often time-consuming and prone to errors. The emergence of deep learning techniques has provided innovative solutions to improve diagnostic efficiency. However, single deep learning models frequently face issues related to extracting key features from complex retinal images. To handle this problem, we present an effective ensemble method for DR diagnosis comprising four main phases: image pre-processing, selection of backbone pre-trained models, feature enhancement, and optimization. Our methodology initiates with the pre-processing phase, where we apply CLAHE to enhance image contrast and Gamma correction is then used to adjust the brightness for better feature recognition. We then apply Discrete Wavelet Transform (DWT) for image fusion by combining multi-resolution details to create a richer dataset. Then, we selected three pre-trained models with the best performance named DenseNet169, MobileNetV1, and Xception for diverse feature extraction. To further improve feature extraction, an improved residual block is integrated into each model. Finally, the predictions from these base models are then aggregated using weighted ensemble approach, with the weights optimized by using Salp Swarm Algorithm (SSA).SSA intelligently explores the weight space and finds the optimal configuration of base architectures to maximize the performance of the ensemble model. The proposed model is evaluated on the multiclass Kaggle APTOS 2019 dataset and obtained 88.52% accuracy.

Summary

We haven't generated a summary for this paper yet.