Linear quadratic control of parabolic-like evolutions with memory of the inputs (2503.14046v1)
Abstract: A study of the linear quadratic (LQ) control problem on a finite time interval for a model equation in Hilbert spaces which comprehends the memory of the inputs was performed recently by the authors. The outcome included a closed-loop representation of the unique optimal control, along with the derivation of a related coupled system of three quadratic (operator) equations which is shown to be well-posed. Notably, in the absence of memory the above elements -- namely, formula and system -- reduce to the known feedback formula and single differential Riccati equation, respectively. In this work we take the next natural step, and prove the said results for a class of evolutions where the control operator is no longer bounded. These findings appear to be the first ones of their kind; furthermore, they extend the classical theory of the LQ problem and Riccati equations for parabolic partial differential equations.
Collections
Sign up for free to add this paper to one or more collections.