Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
464 tokens/sec
Kimi K2 via Groq Premium
248 tokens/sec
2000 character limit reached

LLM-Mediated Guidance of MARL Systems (2503.13553v1)

Published 16 Mar 2025 in cs.MA, cs.AI, and cs.CL

Abstract: In complex multi-agent environments, achieving efficient learning and desirable behaviours is a significant challenge for Multi-Agent Reinforcement Learning (MARL) systems. This work explores the potential of combining MARL with LLM-mediated interventions to guide agents toward more desirable behaviours. Specifically, we investigate how LLMs can be used to interpret and facilitate interventions that shape the learning trajectories of multiple agents. We experimented with two types of interventions, referred to as controllers: a Natural Language (NL) Controller and a Rule-Based (RB) Controller. The NL Controller, which uses an LLM to simulate human-like interventions, showed a stronger impact than the RB Controller. Our findings indicate that agents particularly benefit from early interventions, leading to more efficient training and higher performance. Both intervention types outperform the baseline without interventions, highlighting the potential of LLM-mediated guidance to accelerate training and enhance MARL performance in challenging environments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.