Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Hierarchical Minimum Variance Portfolios: A Theoretical and Algorithmic Approach (2503.12328v1)

Published 16 Mar 2025 in q-fin.PM

Abstract: We introduce a novel approach to portfolio optimization that leverages hierarchical graph structures and the Schur complement method to systematically reduce computational complexity while preserving full covariance information. Inspired by Lopez de Prados hierarchical risk parity and Cottons Schur complement methods, our framework models the covariance matrix as an adjacency-like structure of a hierarchical graph. We demonstrate that portfolio optimization can be recursively reduced across hierarchical levels, allowing optimal weights to be computed efficiently by inverting only small submatrices regardless of portfolio size. Moreover, we translate our results into a recursive algorithm that constructs optimal portfolio allocations. Our results reveal a transparent and mathematically rigorous connection between classical Markowitz mean-variance optimization, hierarchical clustering, and the Schur complement method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)