Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

PrivacyScalpel: Enhancing LLM Privacy via Interpretable Feature Intervention with Sparse Autoencoders (2503.11232v1)

Published 14 Mar 2025 in cs.LG and cs.CL

Abstract: LLMs have demonstrated remarkable capabilities in natural language processing but also pose significant privacy risks by memorizing and leaking Personally Identifiable Information (PII). Existing mitigation strategies, such as differential privacy and neuron-level interventions, often degrade model utility or fail to effectively prevent leakage. To address this challenge, we introduce PrivacyScalpel, a novel privacy-preserving framework that leverages LLM interpretability techniques to identify and mitigate PII leakage while maintaining performance. PrivacyScalpel comprises three key steps: (1) Feature Probing, which identifies layers in the model that encode PII-rich representations, (2) Sparse Autoencoding, where a k-Sparse Autoencoder (k-SAE) disentangles and isolates privacy-sensitive features, and (3) Feature-Level Interventions, which employ targeted ablation and vector steering to suppress PII leakage. Our empirical evaluation on Gemma2-2b and Llama2-7b, fine-tuned on the Enron dataset, shows that PrivacyScalpel significantly reduces email leakage from 5.15\% to as low as 0.0\%, while maintaining over 99.4\% of the original model's utility. Notably, our method outperforms neuron-level interventions in privacy-utility trade-offs, demonstrating that acting on sparse, monosemantic features is more effective than manipulating polysemantic neurons. Beyond improving LLM privacy, our approach offers insights into the mechanisms underlying PII memorization, contributing to the broader field of model interpretability and secure AI deployment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.