Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ZSMerge: Zero-Shot KV Cache Compression for Memory-Efficient Long-Context LLMs (2503.10714v2)

Published 13 Mar 2025 in cs.CL and cs.AI

Abstract: The linear growth of key-value (KV) cache memory and quadratic computational in attention mechanisms complexity pose significant bottlenecks for LLMs in long-context processing. While existing KV cache optimization methods address these challenges through token pruning or feature merging, they often incur irreversible information loss or require costly parameter retraining. To this end, we propose ZSMerge, a dynamic KV cache compression framework designed for efficient cache management, featuring three key operations: (1) fine-grained memory allocation guided by multi-dimensional token importance metrics at head-level granularity, (2) a residual merging mechanism that preserves critical context through compensated attention scoring, and (3) a zero-shot adaptation mechanism compatible with diverse LLM architectures without requiring retraining. ZSMerge significantly enhances memory efficiency and inference speed with negligible performance degradation across LLMs. When applied to LLaMA2-7B, it demonstrates a 20:1 compression ratio for key-value cache retention (reducing memory footprint to 5\% of baseline) while sustaining comparable generation quality, coupled with triple throughput gains at extreme 54k-token contexts that eliminate out-of-memory failures. The code is available at https://github.com/SusCom-Lab/ZSMerge.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
Reddit Logo Streamline Icon: https://streamlinehq.com