Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EscapeCraft: A 3D Room Escape Environment for Benchmarking Complex Multimodal Reasoning Ability (2503.10042v4)

Published 13 Mar 2025 in cs.CV

Abstract: The rapid advancing of Multimodal LLMs (MLLMs) has spurred interest in complex multimodal reasoning tasks in the real-world and virtual environment, which require coordinating multiple abilities, including visual perception, visual reasoning, spatial awareness, and target deduction. However, existing evaluations primarily assess the final task completion, often degrading assessments to isolated abilities such as visual grounding and visual question answering. Less attention is given to comprehensively and quantitatively analyzing reasoning process in multimodal environments, which is crucial for understanding model behaviors and underlying reasoning mechanisms beyond merely task success. To address this, we introduce MM-Escape, an extensible benchmark for investigating multimodal reasoning, inspired by real-world escape games. MM-Escape emphasizes intermediate model behaviors alongside final task completion. To achieve this, we develop EscapeCraft, a customizable and open environment that enables models to engage in free-form exploration for assessing multimodal reasoning. Extensive experiments show that MLLMs, regardless of scale, can successfully complete the simplest room escape tasks, with some exhibiting human-like exploration strategies. Yet, performance dramatically drops as task difficulty increases. Moreover, we observe that performance bottlenecks vary across models, revealing distinct failure modes and limitations in their multimodal reasoning abilities, such as repetitive trajectories without adaptive exploration, getting stuck in corners due to poor visual spatial awareness, and ineffective use of acquired props, such as the key. We hope our work sheds light on new challenges in multimodal reasoning, and uncovers potential improvements in MLLMs capabilities.

Summary

We haven't generated a summary for this paper yet.