Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
122 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Parsing the Language of Expression: Enhancing Symbolic Regression with Domain-Aware Symbolic Priors (2503.09592v1)

Published 12 Mar 2025 in cs.LG and cs.SC

Abstract: Symbolic regression is essential for deriving interpretable expressions that elucidate complex phenomena by exposing the underlying mathematical and physical relationships in data. In this paper, we present an advanced symbolic regression method that integrates symbol priors from diverse scientific domains - including physics, biology, chemistry, and engineering - into the regression process. By systematically analyzing domain-specific expressions, we derive probability distributions of symbols to guide expression generation. We propose novel tree-structured recurrent neural networks (RNNs) that leverage these symbol priors, enabling domain knowledge to steer the learning process. Additionally, we introduce a hierarchical tree structure for representing expressions, where unary and binary operators are organized to facilitate more efficient learning. To further accelerate training, we compile characteristic expression blocks from each domain and include them in the operator dictionary, providing relevant building blocks. Experimental results demonstrate that leveraging symbol priors significantly enhances the performance of symbolic regression, resulting in faster convergence and higher accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.