Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minors in small-set expanders (2503.06826v1)

Published 10 Mar 2025 in math.CO

Abstract: We study large minors in small-set expanders. More precisely, we consider graphs with $n$ vertices and the property that every set of size at most $\alpha n / t$ expands by a factor of $t$, for some (constant) $\alpha > 0$ and large $t = t(n)$. We obtain the following: * Improving results of Krivelevich and Sudakov, we show that a small-set expander contains a complete minor of order $\sqrt{n t / \log n}$. * We show that a small-set expander contains every graph $H$ with $O(n \log t / \log n)$ edges and vertices as a minor. We complement this with an upper bound showing that if an $n$-vertex graph $G$ has average degree $d$, then there exists a graph with $O(n \log d / \log n)$ edges and vertices which is not a minor of $G$. This has two consequences: (i) It implies the optimality of our result in the case $t = dc$ for some constant $c > 0$, and (ii) it shows expanders are optimal minor-universal graphs of a given average degree.

Summary

We haven't generated a summary for this paper yet.