Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

From Dataset to Real-world: General 3D Object Detection via Generalized Cross-domain Few-shot Learning (2503.06282v1)

Published 8 Mar 2025 in cs.CV

Abstract: LiDAR-based 3D object detection datasets have been pivotal for autonomous driving, yet they cover a limited range of objects, restricting the model's generalization across diverse deployment environments. To address this, we introduce the first generalized cross-domain few-shot (GCFS) task in 3D object detection, which focuses on adapting a source-pretrained model for high performance on both common and novel classes in a target domain with few-shot samples. Our solution integrates multi-modal fusion and contrastive-enhanced prototype learning within one framework, holistically overcoming challenges related to data scarcity and domain adaptation in the GCFS setting. The multi-modal fusion module utilizes 2D vision-LLMs to extract rich, open-set semantic knowledge. To address biases in point distributions across varying structural complexities, we particularly introduce a physically-aware box searching strategy that leverages laser imaging principles to generate high-quality 3D box proposals from 2D insights, enhancing object recall. To effectively capture domain-specific representations for each class from limited target data, we further propose a contrastive-enhanced prototype learning, which strengthens the model's adaptability. We evaluate our approach with three GCFS benchmark settings, and extensive experiments demonstrate the effectiveness of our solution for GCFS tasks. The code will be publicly available.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.