Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emergent Abilities in Large Language Models: A Survey (2503.05788v2)

Published 28 Feb 2025 in cs.LG, cs.AI, and cs.CL

Abstract: LLMs are leading a new technological revolution as one of the most promising research streams toward artificial general intelligence. The scaling of these models, accomplished by increasing the number of parameters and the magnitude of the training datasets, has been linked to various so-called emergent abilities that were previously unobserved. These emergent abilities, ranging from advanced reasoning and in-context learning to coding and problem-solving, have sparked an intense scientific debate: Are they truly emergent, or do they simply depend on external factors, such as training dynamics, the type of problems, or the chosen metric? What underlying mechanism causes them? Despite their transformative potential, emergent abilities remain poorly understood, leading to misconceptions about their definition, nature, predictability, and implications. In this work, we shed light on emergent abilities by conducting a comprehensive review of the phenomenon, addressing both its scientific underpinnings and real-world consequences. We first critically analyze existing definitions, exposing inconsistencies in conceptualizing emergent abilities. We then explore the conditions under which these abilities appear, evaluating the role of scaling laws, task complexity, pre-training loss, quantization, and prompting strategies. Our review extends beyond traditional LLMs and includes Large Reasoning Models (LRMs), which leverage reinforcement learning and inference-time search to amplify reasoning and self-reflection. However, emergence is not inherently positive. As AI systems gain autonomous reasoning capabilities, they also develop harmful behaviors, including deception, manipulation, and reward hacking. We highlight growing concerns about safety and governance, emphasizing the need for better evaluation frameworks and regulatory oversight.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com