Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Evaluation of Missing Data Imputation for Time Series Without Ground Truth (2503.05775v1)

Published 26 Feb 2025 in cs.LG and stat.ML

Abstract: The challenge of handling missing data in time series is critical for maintaining the accuracy and reliability of ML models in applications like fifth generation mobile communication (5G) network management. Traditional methods for validating imputation rely on ground truth data, which is inherently unavailable. This paper addresses this limitation by introducing two statistical metrics, the wasserstein distance (WD) and jensen-shannon divergence (JSD), to evaluate imputation quality without requiring ground truth. These metrics assess the alignment between the distributions of imputed and original data, providing a robust method for evaluating imputation performance based on internal structure and data consistency. We apply and test these metrics across several imputation techniques. Results demonstrate that WD and JSD are effective metrics for assessing the quality of missing data imputation, particularly in scenarios where ground truth data is unavailable.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube