Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revitalizing Saturated Benchmarks: A Weighted Metric Approach for Differentiating Large Language Model Performance (2503.05551v1)

Published 7 Mar 2025 in cs.LG

Abstract: Existing benchmarks are becoming saturated and struggle to separate model performances due to factors like data contamination and advancing LLM capabilities. This paper introduces EMDM (Enhanced Model Differentiation Metric), a novel weighted metric that revitalizes benchmarks by enhancing model separation. EMDM integrates final answer and Chain-of-Thought (CoT) reasoning correctness, assigning weights based on the complexity and reasoning depth required to solve a given sample in the evaluation data. Using a baseline LLM in two setups-Unguided, where the model has no prior exposure to test samples, and Guided, where the model has prior knowledge of the desired answer-EMDM distinguishes instances of varying difficulty. The CoT and answer correctness from these setups inform an optimization objective for weight assignment, resulting in a more nuanced evaluation of model performance. Compared to the exact match (EM) metric, which achieves 17% separation on ARC-Challenge, EMDM achieves 46%, demonstrating its effectiveness in differentiating models based on reasoning and knowledge requirements.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com